

Team Status 200

RideFind
Software Architecture Document

Version <1.4>

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 2 of 17

Revision History
Date Version Description Author

19/10/2022 1.0 Initial Creation + Filling in Definitions William Powers

21/10/2022 1.1 Adding Package Diagram and Definitions William Powers

23/10/2022 1.2 Add Class Diagram and Fill in Definitions Joel Clements

23/10/2022 1.3 Final Editing / Formatting William Powers

30/10/2022 1.4 Format Header, add figures list Isabel Loney

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 3 of 17

Table of Contents

1. Introduction 4
1.1 Purpose 4
1.2 Scope 4
1.3 Definitions, Acronyms, and Abbreviations 4
1.4 References 4
1.5 Overview 4

2. Architectural Representation 4

3. Architectural Goals and Constraints 4

4. Use-Case View 4
4.1 Use-Case Realizations 5

5. Logical View 5
5.1 Overview 5
5.2 Architecturally Significant Design Packages 5
5.2.1 Design Model: Package Diagrams 6
5.2.2 Package Descriptions 9
5.2.3 Design Model: Class Diagram 9
5.2.4 Class Diagram Descriptions 5

6. Interface Description 15

6.1 Overview 15

7. Size and Performance 16

7.1 Overview 16

8. Quality 17

8.1 Overview 17

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 4 of 17

Software Architecture Document
1. Introduction

1.1 Purpose

This document provides a comprehensive architectural overview of the system, using a number of different
architectural views to depict different aspects of the system. It is intended to capture and convey the
significant architectural decisions which have been made on the system.

1.2 Scope

This Software Architecture Document provides an architectural overview of the RideFind web application.
RideFind allows rideshare users a centralized place to search for rides regardless of ride vendor. It will also
allow users to sort and filter drivers based on chosen specifications such as: time estimate, cost of ride,
driver rating, car size, etc.

1.3 Definitions, Acronyms, and Abbreviations

Vendor: A company offering ride-share services to the public via their own application interface.

Rideshare: An arrangement in which a passenger travels in a private vehicle driven by its owner, for free or
a fee.

Driver: A employee of a rideshare company vendor that uses their car to give others rides and is in turn
paid through the vendor.

1.4 References

1. RideFind – Use Case Specifications (Deliverable 4)

 2. RideFind – Supplementary Specifications (Deliverable 4)

 3. RideFind – Software Requirements Specifications (Deliverable 4)

1.5 Overview

The following in this document contains class diagrams and class definitions for all components of the
RideFind web applications.

2. Architectural Representation
This section describes what software architecture is for the current system, and how it is represented. It
enumerates the views that are necessary, and for each view, explains what types of model elements it
contains.

3. Architectural Goals and Constraints
RideFind will be developed as a web application showcasing three major components: a live map module,
and a driver list module, and a page navigation module.

All components must be compatible on any browser engine and utilize Reacts functionality of not reloading
when switching pages.

4. Use-Case View
Use-Case View is important to consider when planning a specific iteration centered around a specific use
case scenario. It describes the set of scenarios and/or use cases that represent some significant, central
functionality as well as describes the set of scenarios and/or use cases that have a substantial architectural

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 5 of 17

benefit.

Refer to Use_Case_Specification_Document_Status_200.pdf (Deliverable 5) for Use-Case View details.

4.1 Use-Case Realizations

Refer to Use_Case_Realization_Document_Status_200.pdf (Deliverable 5) for all Use-Case Realizations
and related models.

5. Logical View
This section describes the architecturally significant parts of the design model, such as its decomposition
into subsystems and packages. And for each significant package, its decomposition into classes and class
utilities.

5.1 Overview

This subsection describes the overall decomposition of the design model in terms of its package hierarchy
and layers.

5.2 Architecturally Significant Design Packages

[For each significant package, include a subsection with its name, its brief description, and a diagram with
all significant classes and packages contained within the package.

For each significant class in the package, include its name, brief description, and, optionally, a description
of some of its major responsibilities, operations, and attributes.]

5.2.1 Design Model: Package Diagrams

The design model represents explicitly the structure and organization of the RideFind system. Following
the models, packages are presented with the following specifications: description, corresponding classes,
relations, sub packages.

Figure 1: Design Model Packages Level 1

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 6 of 17

5.2.2 Package Descriptions

Level 1 Packages

Pages

Description: The main system package containing all of the separately routed
webpages. Excepts input from both the import driver package
classes and the import map data package classes to be used and
displayed in the sites three pages.

Corresponding Classes: MainPage, TutorialPage, ResourcePage

Relations: Main RideFind Package. Dependent on sub packages listed
below.

Sub Packages: Main Page Package, Tutorial Page Package, Resources Page
Package.

Figure 2: Design Model Packages Level 2

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 7 of 17

Import Driver Data

Description: Contains all various driver related API classes and deals with all
connection authentication to rideshare vendors.

Corresponding Classes: PullDriverData, DriverAuthentication, CleanDriverData,
GetLocalAPIs

Relations: Dependent on pages package.

Sub Packages: None.

Import Map Data

Description: Contains all various map related API classes and deals with
connection authentication to google map vendor.

Corresponding Classes: MapAuthentication, PullMapData, GetLocalAPIs

Relations: Dependent on pages package.

Sub Packages: None.

Level 2 Packages

Main Page

Description: Contains all classes representing and making up the RideFind
home page including the map display, driver list display, and
navigation header.

Corresponding Classes: MainPage

Relations: Dependent on data received by Pages Package. Shares same
navigation module as other Pages Package sub packages.

Sub Packages: None.

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 8 of 17

Tutorial Page

Description: Contains all classes for viewing and moving through tutorial
page.

Corresponding Classes: TutorialPage

Relations: Shares same navigation module as other Pages Package sub
packages.

Sub Packages: None.

Resources Page

Description: Contains all classes responsible for configuring and displaying
location-oriented vendor web application links for user to jump
to and from.

Corresponding Classes: ResourcePage

Relations: Shares same navigation module as other Pages Package sub
packages.

Sub Packages: None.

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 9 of 17

5.2.3 Design Model: Class Diagram

5.2.4 Class Description

MainPage

Description: Class holding react components of main page display.

Responsibilities: Display main pages components in correct grid layout.

Relations: Association to Navigation class, composition to both
SortFilterBar class and DriverList class.

Attributes: -page_components: array

Methods: +display_components()

Special Requirements: None.

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 10 of 17

SortFilterBar

Description: Class representing the sort and filter buttons that will change the
display of the driver list.

Responsibilities: Interacting with the driver list class and ordering drivers
according to user selected specifications.

Relations: Aggregation relationship to DriverList class, composition
relationship to MainPage class.

Attributes: -current_sort_setting: string

-current_filter_setting: array

Methods: +display_bar()

+by_driver_sort()
+by_time_sort()
+by_cost_sort(
+by_vehicle_sort()
+by_driver_filter()
+by_time_filter()
+by_cost_filter()
+by_vehicle_filter()

Special Requirements: Must be able to view current driver objects in DriverList class.

DriverList

Description: Class represents the list of driver classes pulled from vendor
APIs.

Responsibilities: To dynamically load drivers in order selected by user in
SortFilterBar class.

Relations: Aggregation to SortFilerBar class, composition to MainPage
class, composition to Driver.

Attributes: -drivers: array

Methods: +display_drivers()

+driver_clicked()

Special Requirements: Must adhere to order specifications given by SortFilterBar class.

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 11 of 17

Driver

Description: Class contains each drivers specifications obtained by vendor
API pull.

Responsibilities: Format driver information uniformly for all drivers in order to
have clean display in DriverList class.

Relations: Composition to DriverList class, association to
ExportDriverData class.

Attributes: -driver_cost: int

-driver_time: int
-driver_car_type: “str”
-driver_rating: int

Methods: None

Special Requirements: None

TutorialPage

Description: Class contains methods to display and navigate tutorial PDF

Responsibilities: Display a tutorial PDF for new users

Relations: Association with MainPage, association to NavigationBar

Attributes: -pdf: string(path)

Methods: +display_tutorial()

+forward_page()
+backward_page()

Special Requirements: None

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 12 of 17

ResourcesPage

Description: Class representing display of extra resources for RideFind users.

Responsibilities: Show links to local vendor main pages.

Relations: Generalization to LocalResources classes.

Attributes: -local_vendors: array

Methods: +display_vendors()

Special Requirements: None

LoadResources

Description: Class representing the location of and pulling of links for local
rideshare vendors.

Responsibilities: Must be able to find local vendors, and pull their corresponding
main webpage links for users to jump to.

Relations: Generalization to ResourcesPage class.

Attributes: -local_vendors: array

Methods: +get_local_vendors()

Special Requirements: None

GetLocalAPIs

Description: Class in charge of locating local rideshare vendors and accessing
their prestored API libraries.

Responsibilities: Must be able to find local vendors and communicate
corresponding libraries to DriverAuthenticaiton and
MapAuthentication classes.

Relations: Association to DriverAuthentication and MapAuthentication
classes.

Attributes: -local_apis: array

Methods: +find_local_apis()

+configure_api_library()

Special Requirements: None

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 13 of 17

DriverAuthentication

Description: Class representing authenticating access to vendors API to
obtain local driver information.

Responsibilities: Must be able to reauthenticate on own when token access
expires.

Relations: Association to GetLocalAPIs class and PullDriverData class.

Attributes: -auth_token; string

Methods: +authenticate()

Special Requirements: Needs to store access token in separate hidden file.

MapAuthentication

Description: Class representing authenticating access to Google Maps API to
display live map on MainPage class.

Responsibilities: Must be able to reauthenticate on own when token access
expires.

Relations: Associtaion to GetLocalAPIs class and PullMapData class.

Attributes: -auth_token: string

Methods: +authenticate()

Special Requirements: Needs to store access token in separate hidden file.

PullDriverData

Description: Class representing pulling local driver data from vendor API.

Responsibilities: Must store driver data in clean array of objects to be cleaned and
formatted.

Relations: Association to DriverAuthenticaiton and CleanDriverData
classes.

Attributes: -local_vendors: array

Methods: +pull_data()

Special Requirements: None

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 14 of 17

PullMapData

Description: Class representing pulling live Google Map data from API.

Responsibilities: Must be able to locate current location and center map around
that point.

Relations: Association to MapAuthentication and ExportMapData classes.

Attributes:

Methods: +pull_data()

Special Requirements: None.

CleanDriverData

Description: Class in charge of cleaning pulled local driver data into more
human-readable objects.

Responsibilities: Must keep in ordered list according to pulling from API (nearest
driver to farthest within local range).

Relations: Association to PullDriverData and ExportDriverData classes.

Attributes: -driver_data: array of json objects

-driver_data_cleaned: array

Methods: +clean_data()

Special Requirements: None.

ExportDriverData

Description: Class in charge of cleanly handing local driver data off to the
Driver class and then DriverList class.

Responsibilities: Must keep drivers in order and have clean transfer.

Relations: Association to CleanDriverData and Driver classes.

Attributes: -driver_data: array

Methods: +export_data()

Special Requirements: None

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 15 of 17

ExportMapData

Description: Class in charge of cleanly handing google map data to the Map
class withing the MainPage class components.

Responsibilities: Must keep map centered on current location.

Relations: Association to PullMapData class, composition to Map class.

Attributes: -map_data: xml tag

Methods: +export_data()

Special Requirements: None.

Map

Description: Class representing display on MainPage class of google map
centered on current location.

Responsibilities: Must have all usual map features including zoom, drag, as well
as too and from parameters.

Relations: Composition to ExportMapData and MainPage classes.

Attributes: -current_location: int

-to_address: string
-from_address: string

Methods: +get_location()

+show_to_from()
+display_map()

Special Requirements: None.

6. Interface Description

6.1 Overview

The user interfaces focus is ease of use, which being said our goal is to minimize clickable items and bring
the few that exist to the focal point. Below is an initial prototype of the user interface in its rawest form.

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 16 of 17

As seen above the page will consist of three main components; a live map (the right most white outlined
div), and ride list (the left most grey outlined div) which includes a sort/filter bar, and the navigation header
(the topmost white outlined div). This component layout was modeled from already existing similar map-
sort list sites such as Apartments.com and Microsoft Maps in which there is a clean live updating map with
a categorical list hovering on one side of the page.

Button ‘Home’ will direct the user to the main page shown, ‘tutorial’ will direct the user to a static page
featuring a pdf tutorial put together by the development team, and ‘resources will direct the user to another
static page featuring local rideshare vendor webpage links.

The ride list component will feature two pop ups, sort, and filter, which will allow the user to sort and filter
the outputted driver list to their liking based off built-in categories including: driver cost, tine estimation,
driver rating, vehicle type, etc.

7. Size and Performance

7.1 Overview

The selected framework react will result in slower loading sessions when the user first accesses the site via
browser since all pages will be loaded via JavaScript, but very fast when preforming tasks after page is
loaded. The only limit will be the speed of outside API connections including the google map API.

There are no size specifications as no information is stored to a server and therefore no database is needed
or being used.

RideFind Version: 1.4
Software Architecture Document Date: 30/10/2022
software_architecture_document_status_200

 Team Status 200, 2022 Page 17 of 17

8. Quality

8.1 Overview

The software architecture contributes to maximizing ease or use for all users. As outlined above, the main
classes and user interface and built to create a high-performance dynamic webpage that intuitively makes
sense even for first time users.

API connections to rideshare vendors and google maps will be written and maintained at the highest level
as these are the slowest connections on the site and make up the entirety of page loading times. Reliability
must also be prioritized for API connections as we must never leave the user with blank ride lists. Even
when no drivers are in the area, this must be communicated to the user and subsequently alternative actions
must be supplied.

Team Status 200

RideFind
Use-Case-Realization Specification

Version 1.3

RideFind Version: 1.3
Use-Case-Realization Specification Issue Date: 23/10/2022
use_case_realization_specification_document_status_200

 Status, 2022 Page 2 of 8

Revision History
Date Version Description Author

21/10/2022 1.0 Initial Creation; Introduction section Isabel Loney

23/10/2022 1.1 Add Sequence Diagrams Isabel Loney

23/10/2022 1.2 Final Editing / Formatting William Powers

RideFind Version: 1.3
Use-Case-Realization Specification Issue Date: 23/10/2022
use_case_realization_specification_document_status_200

 Status, 2022 Page 3 of 8

Table of Contents

1. Introduction 4
1.1 Purpose 4
1.2 Scope 4
1.3 Definitions, Acronyms, and Abbreviations 4
1.4 References 4
1.5 Overview 4

2. Use Case 1: First Time User

2.1 Brief Description 4
2.2 Flow of Events - Design 4
2.3 Interaction Diagrams 4

2.3.1 Sequence Diagrams 5
2.3.2 Participating objects 5

2.4 Class Diagrams 5

3. Use Case 2: Rideshare User

3.1 Brief Description 5
3.2 Flow of Events - Design 5
3.3 Interaction Diagrams 6

3.3.1 Sequence Diagrams 6
3.3.2 Participating objects 6

3.4 Class Diagrams 7

4. Use Case 3: Commuter <Optional>

4.1 Brief Description 7
4.2 Flow of Events - Design 7
4.3 Interaction Diagrams 7

4.3.1 Sequence Diagrams 7
4.3.2 Participating objects 7

4.4 Class Diagrams 8

RideFind Version: 1.3
Use-Case-Realization Specification Issue Date: 23/10/2022
use_case_realization_specification_document_status_200

 Status, 2022 Page 4 of 8

Use-Case-Realization Specification
1. Introduction

1.1 Purpose

This document contains information on use-case-realizations for the systems, that being, implementation
details for each specified use case. It is intended to capture and convey what objects will be used in the
system and how they will collaborate in order to achieve system functionality.

1.2 Definitions, Acronyms, and Abbreviations

Vendor: A company offering ride-share services to the public via their own application interface.

Rideshare: An arrangement in which a passenger travels in a private vehicle driven by its owner, for free or
a fee.

Driver: A employee of a rideshare company vendor that uses their car to give others rides and is in turn
paid through the vendor.

1.3 References

1. RideFind – Use Case Specifications (Deliverable 4)
2. RideFind – Supplementary Specifications (Deliverable 4)
3. RideFind – Software Requirements Specifications (Deliverable 4)

1.4 Overview

The sections of the Use-Case Realization document describe use cases in terms of their flow of events,
participant objects and corresponding diagrams.

2. Use Case 1: First Time User

2.1 Brief Description

Users who are visiting the page for the first time will be given an optional tutorial.

2.2 Flow of Events - Design

Basic Flow: New users are presented with the option to take a tour of the app upon first use, users will be
shown how to sort and filter available rideshare options, user will be shown where to access additional
resources and help.

Alternative Flow: User may skip tour and access the page as a returning user.

2.3 Interaction Diagrams

Use Case Diagram -> Deliverable 4, Section 2.7
Sequence Diagram -> Deliverable 5, Section 2.3.1

RideFind Version: 1.3
Use-Case-Realization Specification Issue Date: 23/10/2022
use_case_realization_specification_document_status_200

 Status, 2022 Page 5 of 8

2.3.1 Sequence Diagrams

Figure 1: Use Case 1

2.3.2 Participating objects

Object Description

Tutorial This represents a pdf with information for new users

2.4 Class Diagrams

Class diagram can be viewed in the Software Architecture Document -> Deliverable 5, Section 5.2.3

3. Use Case 2: Rideshare User

3.1 Brief Description

Returning users that have already completed the tutorial will be able to view local rideshare drivers upon
webpage load.

3.2 Flow of Events - Design

Basic Flow: User accesses main page, user inputs their starting and ending location into map, user has
option to filter, and sort based on time, cost, vehicle type, and driver rating, when preferred ride is found,

RideFind Version: 1.3
Use-Case-Realization Specification Issue Date: 23/10/2022
use_case_realization_specification_document_status_200

 Status, 2022 Page 6 of 8

user can select and be sent to organizations site to book.

 Alternative Flow: If no rideshare driver available in area user will be notified via driver list.

3.3 Interaction Diagrams

Use Case Diagram -> Deliverable 4, Section 3.5

Sequence Diagram -> Deliverable 5, Section 3.3.1

3.3.1 Sequence Diagrams

Figure 2: Use Case 2

3.3.2 Participating objects

Object Description

Main Page This represents the components of the visible part of the application that
allows users to search and view rides

Local APIs This represents the public APIs of rideshare services that receive requests
and respond with data pertaining to a user’s desired ride

Google Maps API This object represents the Google Maps API which provides visual data

RideFind Version: 1.3
Use-Case-Realization Specification Issue Date: 23/10/2022
use_case_realization_specification_document_status_200

 Status, 2022 Page 7 of 8

pertaining to a user’s location and their desired ride

3.4 Class Diagrams

Class diagram can be viewed in the Software Architecture Document -> Deliverable 5, Section 5.2.3

4. Use Case 3: Commuter <Optional>

4.1 Brief Description

The webpage will include a section dedicated to public transport for non-rideshare users, or user who wish
to not use a traditional rideshare driver for their trip.

4.2 Flow of Events - Design

User enters main page, user inputs their starting and ending locations, user can select to view local public
transit options that satisfy their trip.

4.3 Interaction Diagrams

Use Case Diagram -> Deliverable 4, Section 4.5

Sequence Diagram -> Deliverable 5, Section 4.3.1

4.3.1 Sequence Diagrams

Figure 3: Use Case 3

RideFind Version: 1.3
Use-Case-Realization Specification Issue Date: 23/10/2022
use_case_realization_specification_document_status_200

 Status, 2022 Page 8 of 8

4.3.2 Participating objects

Object Description

Main Page This represents the components of the visible part of the application that
allows users to search and view rides

Google Maps API This object represents the Google Maps API which receives requests and
responds with data pertaining to a user’s desired public commute

4.4 Class Diagrams

Class diagram can be viewed in the Software Architecture Document -> Deliverable 5, Section 5.2.3

